Verpackung von Sterilisiergut

Maria Theresia Enko
2009
INHALT

1 EINFUHRUNG ... 4

2 AUSWAHL DER VERPACKUNG .. 4

3 PACKLISTEN ... 5

4 VERPACKUNGSARTEN ... 6

4.1 Sterilbarrieresystem .. 6
 4.1.1 Arten von Sterilbarrieresystemen .. 6
 4.1.1.1 Starres Sterilbarrieresystem .. 6
 4.1.1.2 weiches Sterilbarrieresystem .. 7
 4.1.1.3 Setsystem .. 7

4.2 Schutzverpackung ... 8
 4.2.1 Transportverpackung .. 8
 4.2.2 Lagerverpackung ... 8
 4.2.2.1 Nutzungsdauer .. 8

5 VERPACKUNGSMATERIAL .. 9

5.1 Wieder verwendbare Sterilisierbehalter .. 9
 5.1.1 Verschlusssystem .. 10
 5.1.2 Durchlass für das Sterilisationsmedium ... 10
 5.1.2.1 Textilmehrwegfilter und Papiereinmalfilter .. 11
 5.1.2.2 Ventilfilter ... 11
 5.1.2.3 Membranefilter ... 11
 5.1.2.4 Tiefenfilter ... 11
 5.1.3 Handhabung von Sterilisierbehaltern ... 11
 5.1.4 Kennzeichnung von Sterilisierbehaltern .. 12
 5.1.5 Zubehör ... 12

5.2 Weichverpackung ... 13
 5.2.1 Klarsichtsterilisierverpackungen ... 13
 5.2.1.1 Klarsichtbeutel .. 13
 5.2.1.2 Klarsichtschläuche .. 13
 5.2.2 Papierbeutel .. 14
 5.2.3 Papier-Peel-Beutel ... 14
 5.2.4 Sterilisationsbogenpapier .. 14
 5.2.4.1 Diagonalverpackung ... 16
 5.2.4.2 Parallelverpackung .. 17
 5.2.5 Beschriften von Weichverpackungen ... 18
5.2.6 Beschriften von Klarsichtverpackungen ... 18
5.2.7 Beschriften von Bogenpapier .. 18

5.3 Packhilfsmittel .. 19
5.3.1 Tücher ohne Barrierewirkung bei Verwendung als Innenumhüllung 19
5.3.2 Sterilisierkörbe .. 19
5.3.3 Autoklavband .. 21

6 MATERIALKUNDE ... 21
 Die Kunststoffverbundfolie .. 21
 Das Sterilisationspapier ... 22

7 SIEGELUNG ... 23
 Siegelvorgang ... 23
 Freigabe des Siegelgerätes .. 24
 Impuls- oder Balkensiegelgeräte .. 24
 Durchlaufsiegelgeräte .. 24

8 VALIDIERUNG ... 25
 Abnahmebeurteilung ... 25
 Funktionsbeurteilung .. 25
 Leistungsbeurteilung ... 25

9 PRAKTISCHE ÜBUNGEN ... 26
1 Einführung

Durch Verwendung der Begriffe aus dieser Norm soll sichergestellt werden, dass Begriffe im Bereich der Verpackung von Sterilisiergut einheitlich verwendet und verstanden werden.

Bei Verwendung dieses Skriptums sind immer die aktuellen Normenausgaben zu beachten.

Die EN ISO 11607 besteht aus zwei Teilen

Teil 1:
- Anforderungen an Materialien
- Anforderungen an Sterilbarrieresysteme (SBS)
- Anforderungen an Verpackungssysteme

Teil 2:
- Anforderungen an die Validierung von Verfahren für die Formgebung, Siegelung und Zusammensetzung.

Die Validierung: besteht aus
1) Abnahmebeurteilung
2) Funktionsbeurteilung
3) Leistungsbeurteilung.

Der Begriff „Verpackungssystem“ beschreibt die Kombination aus Sterilbarrieresystem (SBS) und Schutzverpackung.

Dieses Skriptum beinhaltet nicht die Verpackungsmöglichkeiten für sterile Flüssigkeiten.

2 Auswahl der Verpackung

Bereits bei der Beschaffung von Verpackungsmaterial ist darauf zu achten, dass nur Material eingekauft wird, welches nach den gültigen Normen hergestellt wurde.

Die Medizinprodukte (=MP) z.B. Instrumente oder Verbandstoffe müssen in einer Verpackung (=VP) sterilisiert werden, da unverpackte Sterilgüter nicht transport- und lagerfähig wären.

Die Verpackung schützt den sterilen Inhalt (MP) bis zur Anwendung beim Patienten vor Wiederverkeimung und Verunreinigung (=Rekontamination).
Daher ist die wichtigste Aufgabe der Verpackung der Schutz des Sterilgutes vor Rekontamination nach der Sterilisation.

Die Leistungsfähigkeit und Stabilität der Verpackungssysteme ist zu prüfen – Nachweis der Unversehrtheit nach Sterilisation, Handhabung, Verteilung und Transport ist zu erbringen. Durch die Auswahl des passenden Verpackungssystems kann das MP vor der Sterilisation

- verpackt
- in der Verpackung sterilisiert
- anschließend steril transportiert und gelagert
- und vor dem Einsatz kontaminationsfrei aus der Verpackung entnommen werden

Dabei ist zu berücksichtigen:

- die Masse, äußere Gestalt, scharfe Kanten oder herausragende Teile des MP
- ggf. eine Beschädigungsempfindlichkeit (z.B. Knicken, Erschütterung) des MP
- die Wirksamkeit des Sterilisationsverfahrens darf durch das VP-System nicht beeinträchtigt werden
- die Sterilität bei Transport und Lagerung bis zur Anwendung muss erhalten bleiben

3 Packlisten

Art und Größe des Verpackungssystems sollten für jedes Sterilisiergut festgelegt und dokumentiert sein (Bestandteil der Packliste).

Packlisten sollten unbedingt vorhanden sein!

Der Hersteller von Verpackungsmaterial muss dem Anwender erläutern, wie das Verpackungsmaterial zu verwenden ist (z.B. für welche Sterilisationsart geeignet, mit welcher Siegeltemperatur zu siegeln ist, wie der Sterilisierbehälter zu reinigen ist,...........).

Nur wenn diese Angaben befolgt werden ist gewährleistet, dass das Verpackungsmaterial auch seinen Zweck erfüllt (z.B. Schutz vor Wiederverkeimung, Sterilität in der Verpackung,.....).

Packlisten werden vom sachkundigen, verantwortlichen Personal erstellt.
Das Personal welches das MP verpackt, muss sich an die Packlisten halten, wenn Abweichungen auftreten, muss vor der Weiterverarbeitung die Sachlage durch das Fachpersonal beurteilt werden.

Packlisten müssen befolgt werden!

4 Verpackungsarten

4.1 Sterilbarrieresystem

Das Sterilbarrieresystem bildet ein Hindernis für Mikroorganismen und ermöglicht die aseptische Bereitstellung des Produktes am Ort der Verwendung.

Der Begriff Sterilbarrieresystem beschreibt die Mindestverpackung, die für die Aufrechterhaltung der geforderten Funktionen notwendig ist.

Diese sind:
- eine Sterilisation zu ermöglichen
- eine mikrobielle Barriere darzustellen
- die aseptische Bereitstellung des Produktes zu ermöglichen

Beispiele für vorgefertigte Sterilbarrieresysteme:
- wieder verwendbare Behälter bzw. Container
- Papier-, Klarsicht-Beutel, und Schläuche; dies sind nur teilweise verschlossene Sterilbarrieresysteme vor der Befüllung und dem endgültigen Verschluss oder der endgültigen Siegelung.

4.1.1 Arten von Sterilbarrieresystemen

4.1.1.1 Starres Sterilbarrieresystem

Beispiel für ein starres Sterilbarrieresystem

Beispiel 1

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Siebschale</td>
</tr>
<tr>
<td>2</td>
<td>Umrüstung</td>
</tr>
<tr>
<td>3</td>
<td>Sterilisationscontainer</td>
</tr>
</tbody>
</table>

Beispiel 2

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Siebschale</td>
</tr>
<tr>
<td>2</td>
<td>Sterilisationscontainer</td>
</tr>
</tbody>
</table>
4.1.1.2 weiches Sterilbarrieresystem

Beispiele für weiche Sterilbarrieresysteme

Beispiel 1

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Siebschale</td>
<td>mit oder ohne Halterungen</td>
</tr>
<tr>
<td>2</td>
<td>Umhüllung</td>
<td>Textil, Papier, Vlies</td>
</tr>
<tr>
<td>3</td>
<td>Sterilisationsbogenpapier</td>
<td>lt. Norm verschlossen</td>
</tr>
<tr>
<td>4</td>
<td>Sterilgutkorb</td>
<td>damit wird Packung im Sterilisator stapelbar</td>
</tr>
</tbody>
</table>

Beispiel 2

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Klarsichtschläuch</td>
<td>versiegelt</td>
</tr>
<tr>
<td>2</td>
<td>Sterilisationsbogenpapier</td>
<td>lt. Norm gefaltet</td>
</tr>
<tr>
<td>3</td>
<td>Sterilgutkorb</td>
<td>damit wird Packung im Sterilisator stapelbar</td>
</tr>
</tbody>
</table>

Beispiel 3

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sterilisationsbogenpapier</td>
<td>lt. Norm gefaltet</td>
</tr>
<tr>
<td>2</td>
<td>Sterilgutkorb</td>
<td>damit wird Packung im Sterilisator stapelbar</td>
</tr>
</tbody>
</table>

Beispiel 4

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sterilisationsbogenpapier</td>
<td>lt. Norm gefaltet</td>
</tr>
<tr>
<td>2</td>
<td>Sterilisationsbogenpapier</td>
<td>lt. Norm gefaltet</td>
</tr>
<tr>
<td>3</td>
<td>Sterilgutkorb</td>
<td>damit wird Packung im Sterilisator stapelbar</td>
</tr>
</tbody>
</table>

Mehrfachverpackungen bieten eine höhere Sicherheit, da sie stufenweise (zuerst die äußere, dann die innere Verpackung) entfernt werden. So werden mit der äußeren Verpackung möglicherweise vorhandene Verunreinigungen (Staubpartikel, Mikroorganismen) beseitigt. Dabei ist zu beachten, dass die in die Luft aufgewirbelten Staubteilchen sich nicht auf die Sterilgüter absetzen dürfen (Abstand halten).

Aber auch unentdeckte Mikrobeschädigungen der äußeren Verpackungslage können so ausgeglichen werden.

Daher sind Mehrfachverpackungen nur mit der richtigen (stufenweisen) Entnahmetechnik sinnvoll.

Eine zu hohe Anzahl von Verpackungslagen (z.B. einrollen) ist zu unterlassen, da die Vielligkeit von Verpackungsmaterial den Zutritt für das Sterilisationsmedium erschwert.

4.1.1.3 Setsystem

Aus hygienischen Gründen soll die notwendige Anzahl von sterilen Instrumenten und MP (Medizinprodukten) pro Patient und Eingriff möglichst in einer Packung sein.

Eine Packung gilt als angewendet, sobald sie geöffnet wurde und darf nicht wieder verwendet oder aufbewahrt werden.

Daher ist die Verwendung von Sammelpackungen für mehrere Patienten oder eine Packung mehrmals bei einem Patienten einzusetzen nicht vorgesehen,
4.2 Schutzverpackung

4.2.1 Transportverpackung

Materialien und vorgefertigte Sterilbarrieresysteme müssen so verpackt sein, dass der erforderliche Schutz geboten wird, um die Leistungsmerkmale während Transport und Lagerung aufrechtzuerhalten.

Die Transportverpackung schützt das sterile MP (Medizinprodukt) in seinem Verpackungssystem am Transportweg und gegebenenfalls bei der Lagerung vor Verunreinigung, Durchfeuchtung, Beschädigung, etc.

Die Transportverpackung wird nach der Sterilisation angebracht und kann ein staubdicht schließender Behälter, ein Karton, ein Transportwagen oder ein Tüte sein.

Vor Einlagerung in abdichtende Transportverpackungen muss das Sterilgut abgekühlt und absolut trocken sein, da sich sonst im Inneren Kondenswasser bilden kann. Transportverpackungen werden an der Schleuse zum Sterilgutlager des Anwenders entfernt. Ist beim Anwender kein Sterilgutlager vorhanden, bleibt die Transportverpackung bis zur Anwendung erhalten.

4.2.2 Lagerverpackung

Materialien und vorgefertigte Sterilbarrieresysteme müssen unter Bedingungen transportiert und gelagert werden die sicherstellen, dass die Leistungsmerkmale innerhalb festgelegter Grenzwerte bleiben.

Dies kann erreicht werden durch:

a) den Nachweis, dass diese Merkmale unter festgelegten Lagerbedingungen beibehalten werden, und

b) die Sicherstellung, dass die Lagerbedingungen innerhalb festgelegter Grenzwerte bleiben

4.2.2.1 Nutzungsdauer

Die Nutzungsdauer ist der Zeitraum während dessen alle Leistungsanforderungen erfüllt sind. (z. B. für wieder verwendbare Verpackungen wie Container oder Textilien).

Krankenhaushygiene für jedes Sterilgutlager entsprechende Lagerfristen zu erstellen und festzulegen.

5 Verpackungsmaterial

5.1 Wieder verwendbare Sterilisierbehälter

Der Sterilisierbehälter ist ein zur wiederholten Verwendung bestimmter, formbeständiger Behälter mit Zwangsdurchlass für das Sterilisationsmedium, in dem das Sterilisiergut sterilisiert, transportiert und steril aufbewahrt werden kann.

Der Sterilisierbehälter besteht aus:
- Wanne
- Deckel
- Durchlass für das Sterilisiermedium / Filter
- Verschluss
- Tragegriffe

Ausgehend von den Normen sind Sterilisierbehälter auf die STE-Maßeinheit abgestimmt.

Eine Sterilisationseinheit (STE) hat die Maße von

Höhe = 300 mm X Breite = 300 mm X Länge = 600 mm

1 STE = 300 x 300 x 600 = 54 Liter

Die verschiedenen Größen der Sterilisierbehälter sind auf diese STE-Maßeinheit angepasst z.B. Halbcontainer (300x600x150) oder Viertelcontainer (300x300x150). Sterilisierbehälter derselben Fabrikationsserie können im Sterilisator gestapelt werden. Um den Rauminhalt des Sterilisators optimal auszulasten, sind die Größen untereinander zu kombinieren siehe Zeichnung:
5.1.1 Verschlusssystem
Der Deckel wird mit der Wanne durch Verschlüsse gesichert. Am Verschlusssystem muss deutlich erkennbar sein, ob der Sterilisierbehälter nach der Sterilisation geöffnet wurde.

Dies erreicht man mit:
- einmalverwendbaren Kunststoffplomben
die Plombe zerreißt beim Öffnen des Sterilisierbehälters
- einem Verschluss-Mechanismus
 bei diesem System verriegelt ein Mechanismus selbsttätig durch die Wärmeinwirkung während der Sterilisation- es erscheint eine Farbmarkierung (z.B. GRÜN), beim Öffnen entriegelt das System und verändert die Farbe (z.B. auf ROT).

5.1.2 Durchlass für das Sterilisationsmedium

Durch Forschung und Entwicklung kommen laufend neue Produkte auf den Markt. Der Anwender hat sich auf jeden Fall zu überzeugen, dass das von ihm verwendete Produkt den geltenden Normen entspricht und für das von ihm verwendete Sterilisationsverfahren geeignet ist.
Beispiele für Filtersysteme:

5.1.2.1 **Textilmehrwegfilter und Papiereinmalfilter**

Das Filtersystem besteht aus einer Öffnung (üblicherweise) im Deckel die im Inneren durch Filter abgedeckt werden und Filterhalterungen mit Perforationen (= runde Löcher) zur Befestigung des Filters am Deckel haben.

Es gibt Textil- oder Papierfilter, diese müssen vom Hersteller lt. NORM geprüft sein.

Die Funktion wieder verwendbarer Textilfilter darf durch wiederholte Sterilisationen bzw. durch den Kontakt mit Reinigungslösungen nicht beeinträchtigt werden. Der Hersteller muss die Anzahl der möglichen Sterilisationszyklen angeben. Der Anwender hat die Einhaltung der vom Hersteller angegebenen Anzahl der Sterilisationszyklen nachweislich zu dokumentieren.

Papierfilter sind nach jeder Sterilisation zu erneuern (= Einmalprodukt).

Anmerkung: Einmalfilter sind zu bevorzugen! WARUM?
Da der Filter bei jeder Aufbereitung gewechselt wird, sind die Qualitätsbedingungen bei jedem Durchlauf gleich. Der benutzte Filter sollte beim Anwender entnommen, auf einwandfreien Zustand geprüft, und entsorgt werden.

5.1.2.2 **Ventilfilter**

Sterilisierventile reagieren auf die Druckunterschiede während des Sterilisationsvorganges.

Während der Vakuumphasen öffnet das Ventil nach oben und die Luft kann aus dem Sterilisierbehälter entweichen.

Während der Druckphasen öffnet das Ventil nach unten und erlaubt das Eindringen des Wasserdampfes in den Sterilisierbehälter.

Außerhalb des Sterilisators ist das Sterilisierventil geschlossen.

Eine Zusatzausstattung für Instrumentencontainer ist das Kondensatventil in der Bodenwanne. Das Kondensat, das während der Dampfsterilisation entsteht, tropft in den Gefälleboden und sammelt sich am Bodenablauf.

5.1.2.3 **Membranefilter**

Es handelt sich um eine poröse Membrane, die mit einem feinen Lochsieb vergleichbar ist. Membranen halten kleine Teilchen (Partikel, Keime) zurück (Beispiel: Metallmembran).

5.1.2.4 **Tiefenfilter**

5.1.3 **Handhabung von Sterilisierbehältern**

Es sind die vom Hersteller festgelegten Vorgaben zu befolgen.
Voraussetzung für eine fehlerfreie Anwendung der Sterilisierbehälter ist, dass

- das Personal die erforderlichen Kenntnisse besitzt
- Packlisten vorhanden sind
- schriftliche Arbeitsanweisungen vorhanden sind

Wieder verwendbare Sterilisierbehälter sind nach deren Verwendung dem Medizinproduktekreislauf zuzuführen.

Beispiele über den Inhalt der Arbeitsanweisungen

- Angaben zur Nutzungsdauer (Gebrauchszyklen)
- beim Filter zum mehrfachen Gebrauch
 - die Dauer der Verwendbarkeit oder Kriterien, die einen Filterwechsel notwendig machen
- die Art und Weise wie die Sichtprüfung durchzuführen ist
- Angaben zu Reinigung und Desinfektion (Einsatz PH-neutraler Reinigungsmittel für Aluminiummaterialien und eloxierte Aluminiumteile)
- Angaben zum Gewicht (Zuladegewicht)
- Angaben zur Füllhöhe
 - z.B. 2 cm unter dem Wannenrand
- Angaben zur Füllmenge
 - z.B. eine Hand kann mühelos zwischen die Wäschstücke geschoben werden
- Angaben zur Füllrichtung
 - z.B. Wäschstücke sind senkrecht in den Sterilisierbehälter einzuordnen
- Angaben zur Legetechnik und Größe des Einschlagtuches
- Angaben für besondere Materialien z.B. bei Gummiwaren ist eine direkte Berührung mit Metallteilen z.B. durch Einlegen eines Tuches zu verhindern

5.1.4 Kennzeichnung von Sterilisierbehältern

Es **muss** erkennbar sein, dass

- der StB (=Sterilisierbehälter) sterilisiert wurde (z.B. durch chemischen Indikator)
- der Sterilisierbehälter vor der Anwendung des Sterilgutes nicht geöffnet wurde

darüber hinaus sollten folgende Angaben deutlich ersichtlich sein:

- Inhalt
- Chargennummer bzw. laufende Nummer zur Rückverfolgung
- Sterilisations- und/ oder Ablaufdatum
- Verpacker

5.1.5 Zubehör

Die Siebschale ist als Instrumententräger das wichtigste Zubehörteil des Sterilisierbehälters.

Weitere Zubehörteile sind:

- Trennwände
Spannrahmen
Fixierklammern.
Sortierstifte
Klammern
Noppenmatten
Halterungen
Kleinteilbehälter

Alle diese Teile dienen dem besseren Schutz der Instrumente und der besseren Übersicht auf der Siebschale.

5.2 Weichverpackung

Weichverpackungen sind leicht, anpassungsfähig und können dem Sterilisiergut in Form und Größe sehr gut angepasst werden.

Weichverpackungen sind Einwegartikel und können nicht wieder verwendet werden.

5.2.1 Klarsichtsterilisierverpackungen

5.2.1.1 Klarsichtbeutel

- Entnahmehilfe (Daumenausschnitt)
- Dampf-, Formaldehyd- und EO-Gas-Indikatoren (Prozessindikatoren schlägt bei der Sterilisation um)
- sowie Erklärung des Indikatorumschlags
- Öffnungssymbol mit Angabe der Peelrichtung
- Kennzeichnung z. B. Größe, Normbezug,…
 KBOS = Klarsichtbeutel ohne Seitenfalte
 KBMS = Klarsichtbeutel mit Seitenfalte
- Artikelnummer / Chargennummer / Herstellungsdatum
- Hersteller- und Markenname

5.2.1.2 Klarsichtschläuche

Die ideale Verpackung für überlange Sterilisiergüter.

- Schneiden Sie die Klarsichtschläuche mit je 3-4 cm Übermaß für die Kopf- und Bodensiegelnaht zu.
Siegeln Sie so, dass mindestens 2-3 cm Papier / Folie an der Kopfsiegelnaht als Peelhilfe überstehen.

Die Ecken der überstehenden Peellasche sollten nicht angeschnitten werden, da dies ein Aufrollen der Folie begünstigt, es entsteht eine Sammelstelle für Staub!

Beim Packen die spätere Peelrichtung berücksichtigen (Aufdruck der Rolle).

5.2.2 Papierbeutel

Die aus Sterilisationspapier hergestellten Papierbeutel stellen eine preiswerte Alternative zur Klarsichtsterilisierverpackung dar. Um die Papierbeutel zu verschließen, wird ebenfalls das Heißsiegelverfahren verwendet. Da Papier aber nicht thermisch verschmelzen kann, ist eine Beschichtung aus einem schmelzfähigen und damit siegelfähigen Material notwendig.

- Daumenausschnitt
- Heißsiegelbeschichtung eingefärbt und damit sichtbar = Siegelzone
- Dampfindikator (Prozessindikator =schlägt in der Sterilisation um)
- Kennzeichnungsblock mit Hersteller- und Markenname, Größenkennzeichnung, Herstellungsdatum
- heißgesiegelter und geklebter, doppelt gewickelter Boden

Das Öffnen ist nur mit einer Schere möglich (Aufreißen kann zur Verunreinigung des Sterilguts durch unsterile Papierpartikel von der Verpackungsaußenseite führen).

5.2.3 Papier-Peel-Beutel

Der Papier-Peel-Beutel (PP-Beutel) wurde als Alternative zum Klarsichtbeutel entwickelt.

Der Papier-Peel-Beutel besteht wie der Papierbeutel aus Sterilisationspapier, ist jedoch durch seine Verarbeitung peelfähig (="auseinanderziehbar").

Die Papier-Peel-Beutel sind mit Symbolaufdrucken für Standardinstrumente bedruckt.

Dennoch kann der PP-Beutel die Klarsichtverpackung nicht vollständig ersetzen, da die Sichtbarkeit des Inhalts gerade bei Spezialinstrumenten notwendig ist.

5.2.4 Sterilisationsbogenpapier

Sterilisationsbogenpapier wird meist für die Verpackung von größeren Sterilisiergütern (Instrumenten- und/oder Wäschesets) eingesetzt und stellt eine Alternative zum Sterilisierbehälter dar.
Da das kontaminationsfreie Öffnen nur bei korrekter Falttechnik möglich ist, ist das praktische Können des Personals eine Voraussetzung für den Einsatz dieser Verpackungsart.

Bei der Verwendung von Sterilisationsbogenpapier ist die normgerechte Falttechnik zu beachten!

Die Innenverpackung kann als sterile Unterlage verwendet werden (bestimmte Textilen sind wegen der geringen Keimdichtigkeit ungeeignet).

Die Größe der zum Einschlagen verwendeten Papierbögen richtet sich nach der Größe der zu verpackenden Objekte. Die Kantenlänge der als Außerverpackung dienenden Papierbögen soll 10-20cm länger als die der für die Innenverpackung verwendeten Papierbögen sein.

Beim Verpacken sind die bei der Sterilisation entstehenden Kräfte zu berücksichtigen. Es ist daher zu beachten, dass das Sterilisationspapier sich weder über die Instrumente, noch über die Kanten der Instrumentensiebe spannt, sondern locker darüber schmiegt, damit Bewegungen der Verpackung während des Druckwechsels bei der Sterilisation möglich sind.

Handhabungstips:

- vorteilhaft ist die Innen- und Außenverpackung in verschiedenen Farben (die Anwender können sofort erkennen, ob die Außenhülle bereits abgenommen wurde)
- die Stapelbarkeit und Transportsicherheit wird nur durch die zusätzliche Verwendung von Sterilisierkörben erreicht

Folgende Verpackungstechniken sind anzuwenden:

a) Diagonalverpackung

b) Parallellverpackung
5.2.4.1 Diagonalverpackung

Verpackungsfolge 1
Das Sterilisiergut wird so auf die Mitte des Papierbogens gestellt, dass seine Kanten einen rechten Winkel mit den Diagonalen des Papierbogens bilden.

Verpackungsfolge 2
Der Papierbogen wird über die Breitseite des Sterilisiergutes (z.B. Sterilisiersiebschale) nach oben gezogen und parallel zur Längskante zurückgeschlagen, so dass das Sterilisiergut völlig bedeckt ist. Dabei bildet sich ein Dreieck (Zipfel), das das Öffnen unter aseptischen (Handlung mit dem Ziel die Sterilität zu erhalten) Bedingungen ermöglicht.

Verpackungsfolge 3
Der gleiche Vorgang wie im Bild 2 erfolgt von rechts und von links.

Verpackungsfolge 4
Auf der Oberseite des Paketes bildet sich so eine offene Tasche an einer Längsseite.

Verpackungsfolge 5 und 6
Der letzte Teil des Papierbogens wird nun über das zu verpackende Objekt gezogen und der Zipfel des abdeckenden Papiers so weit in die Tasche gestülpt, dass er noch eben herausragt.
Das Papier wird anschließend mit Klebeband und/oder Indikatorband verschlossen. Herstellerempfehlungen für die Anwendung des Klebebandes beachten.

5.2.4.2 Parallelverpackung

Verpackungsentwurf 1 Verpackungsentwurf 2 Verpackungsentwurf 3

Verpackungsentwurf 4 Verpackungsentwurf 5 Verpackungsentwurf 6 Verpackungsentwurf 7

Verpackungsentwurf 8 Verpackungsentwurf 9
Verpackungsfolge 1
Sterilisiergut (z.B. Instrumentensieb) auf Papiermitte stellen.

Verpackungsfolge 2
Vorderseite des Papiers über das Instrumentensieb schlagen.

Verpackungsfolge 3
Kante des Papiers nach außen umschlagen, etwa bis in Höhe des Sterilisiergutes.

Verpackungsfolge 4
Hintere Seite des Papiers nach vorn schlagen.

Verpackungsfolge 5
Papierkante nach außen umschlagen; Papier schließt mit der vorderen oberen Kante ab.

Verpackungsfolge 6, 7 und 8
Papier seitlich einschlagen und über das Sterilisiergut (z.B. Instrumentensieb) legen.

Verpackungsfolge 9
Papier mit Klebeband und Indikatorband fixieren.

Verpackungsfolge 10
Die gepackten Pakete werden anschließend mit Klebeband mit oder ohne Behandlungsindikator gesichert.

5.2.5 Beschriften von Weichverpackungen

Die Außenseite der Sterilgutverpackung muss so gekennzeichnet sein, dass vom Verbraucher deutlich zu erkennen ist, dass diese Packung einem Sterilisationsverfahren unterworfen wurde. Darüber hinaus sollten folgende Angaben ersichtlich sein:

- Inhalt
- Chargennummer bzw. laufende Nummer zur Rückverfolgung
- Sterilisations- und/oder Ablaufdatum
- Verpacker

Grundsätzlich gilt, dass Weichverpackungen **niemals** mit spitzen, harten Schreibern (Kugelschreiber, Bleistift) beschriftet werden dürfen.

Geeignet sind weiche, sterilisationsfeste Faserschreiber. Da für diese Stifte aber oft lösungsmittelhaltige Farben mit evtl. toxischen Inhaltsstoffen verwendet werden, darf keinesfalls im Füllgutraum auf dem Sterilisationspapier beschriftet werden. Da ein Durchschlagen der Farben droht, bzw. die beschriebenen Stellen nicht mehr sicher keimdicht sind.

Angaben vom Hersteller des Verpackungsmaterials einholen, mit welchem Stift die Beschriftung erfolgen kann.

5.2.6 Beschriften von Klarsichtverpackungen

Immer außerhalb des Füllgutraumes, z.B. in der Bodenzone unterhalb der Siegelnaht beschriften.

5.2.7 Beschriften von Bogenpapier

 Auch hier sollte eine Beschriftung direkt auf das Papier unterlassen werden, da lösungsmittelhaltige Farben durch das Papier durchschlagen und auf das Füllgut übergehen.

5.3 Packhilfsmittel

Ein Packhilfsmittel ist keine Sterilgutbarriereverpackung, aber die Funktion dieser wird dadurch unterstützt. (z.B.: Schutzbekärler, Einschlagtuch, Spitzenschutz, Sterilisierkörbe)

5.3.1 Tücher ohne Barriewirkung bei Verwendung als Innenumhüllung.

5.3.2 Sterilisierkörbe

Unbedingt Herstellerangaben beachten.
Beispiele über den Inhalt der Arbeitsanweisungen

- Angaben zum Beladegewicht (Zuladegewicht)
- Angaben zur Füllhöhe z.B. nicht über den Rand füllen
- Angaben zur Füllrichtung
 z.B. Sterilisiergutverpackungen sind senkrecht in den Sterilisierkorb einzuordnen
- Angaben für besondere Materialien
 z.B. schwere Einzelinstrumente sind horizontal zu legen (dadurch ist das Gewicht des Füllinhaltes auf eine größere Fläche verteilt)
- Angaben zur Füllmenge
 z.B. eine Hand muss mühelos zwischen die einzelnen Teile geschoben werden können
 z.B. vollständige Füllung der Sterilisierkörbe um das „Platzen“ der zu verhindern

KS = Klarsichtschlauch
KB = Klarsichtbeutel

(Abbildung 2007.06.11. aus internet_scheer_dü_0107[1])
RICHTIG

Der Sterilisierkorb ist optimal beladen, die Weichverpackungen können sich während der Sterilisation gegenseitig stützen.

FALSCH

Zu wenig Weichverpackungen im Sterilisierkorb. Siegelnähte, Klebenähte und Klebestellen können aufreißen.

5.3.3 Autoklavband

Das Autoklavband dient zur Fixierung des Sterilisationsbogengeschen und ist mit und ohne Indikatorstreifen erhältlich. Das Kreppmaterial der Bänder dehnt sich während der Sterilisation soweit aus, dass ein Aufplatzen der Verpackungen verhindert wird. Für die Anwendung sind die Herstellerangaben zu beachten. Für die Anwendung des Autoklavbandes mit Indikator kann es eine Längenbeschränkung geben.

6 Materialkunde

Das Sterilisationspapier

wird für die Herstellung von Klarsichtsterilisierverpackungen, Papiertüten oder Sterilisationsbogenpapier verwendet. Es besteht aus Zellstofffasern, die durch nassfesten Leim verbunden werden. Die nassfeste Leimung macht das Papier sterilisationsfest (durchlässig für Luft und das Sterilisationsmedium, jedoch dicht gegenüber Partikeln und Flüssigkeiten). Aggressive Flüssigkeiten wie Alkohol oder Desinfektionsmittel zerstören die nassfeste Verleimung und damit die Barrierekraft. Daher darf das Sterilisationspapier niemals mit diesen Flüssigkeiten in Berührung kommen.

Die spezielle Filterwirkung des Sterilisationspapiers - durchlässig für Luft und Sterilisationsmedien, jedoch dicht gegenüber keimtragenden Staubpartikeln und Flüssigkeiten - wird durch eine festgelegte Porengröße erreicht.

Wenn wir von "Poren" sprechen, sind keineswegs „Durchgänge“ gemeint. Wenn Luft- oder Dampfmoleküle die Papierstruktur passieren, entspricht das einem labyrinthischen Durchgang, den größere Partikel (z.B. Staub) oder Wassertropfen (=Keimträger) nicht passieren können - darauf beruht die Filterwirkung des Papiers! Poren gehen nicht "auf und zu"
7 Siegelung

7.1 Siegelvorgang

Nach dem Füllen werden Klarsichtsterilisierverpackungen (Beutel, Rolle), Papierbeutel und Papier-Peel-Beutel im Heißsiegelverfahren verschlossen. Dies erfolgt mit speziellen Siegelgeräten für Sterilisierverpackungen (keine Folienschweißgeräte für den Haushalt).

Beim Heißsiegelverfahren wird durch Wärmeeinwirkung eine zwischen zwei Materialschichten gelegene Schicht bis zum Schmelzpunkt erwärmt und anschließend kräftig zusammengepresst und abgekühlt – dadurch verkleben die Materialschichten. Diesen Vorgang nennt man thermische Verschmelzung. Beim Klarsichtsterilisiermaterial schmilzt die innere Folienschicht (Polypropylen), beim Papierbeutel und Papier-Peel-Beutel die Beschichtung.

Die Siegelnahtqualität ist von den Einstellungen (Temperatur, Druck) am Gerät abhängig. Die Siegeltemperatur kann für jedes Erzeugnis verschieden sein (siehe Angaben im technischen Datenblatt des Herstellers). Die gebräuchlichsten Siegeltemperaturen liegen zwischen 150°C und 220°C.

Die Siegelnaht muss durchgehend, flächig und ohne Fehlstellen sein.

Die Siegelnahtbreite der Verschlussnaht muss mindestens 8 mm betragen.

Die Ausführung der Siegelnaht ist entweder eine durchgehende Siegelnaht oder 3 bis 4 feine Rillen (wobei die Fläche der Rille zusammengezählt ebenfalls mindestens 8 mm ergeben muss). Einzelne Rillen sind leichter „peelbar“ (= „auseinanderziehbar“) und besser sichtbar (Farbunterschied).

Eine optimale Siegelnaht ist immer der Mittelweg zwischen guter Haltbarkeit und leichter „Peelbarkeit“ (= „Auseinanderziehbarkeit“).

Bei der Verwendung von Weichverpackungen mit Seitenfalte ist das Entstehen von Kanälen
im Übergangsbereich von 2 auf 4 Lagen unbedingt zu vermeiden.

7.2 Freigabe des Siegelgerätes

Das Siegelgerät ist täglich vor Verwendung zu überprüfen und für den Tagesbetrieb freizugeben (Dokumentation!).
Schnelle und objektive Überprüfung der Kriterien Anpressdruck und Siegeltemperatur.

Es gibt auch Siegelnahprüfgeräte für die sichere und kontinuierliche Validierung von Siegelprozessen nach ISO 11607/EN 868-5.
Das Siegelgerät ist nach Herstellerangaben zu warten und regelmäßig zu überprüfen.

7.3 Impuls- oder Balkensiegelgeräte

Diese Geräte siegeln mittels Siegelbalken, zwischen die die Sterilgutverpackung gelegt wird.
Es handelt es sich um einfache, kostengünstige Geräte.
Balkensiegelgeräte können leicht beschädigt werden, dann sind ein gleichmäßiger Siegeldruck und damit eine gleichmäßige Siegelnahftfestigkeit nicht mehr gewährleistet.
Deratige Geräte sollten für die Verpackung von Medizinprodukten nicht verwendet werden.

7.4 Durchlaufsiegelgeräte

Diese Geräte ziehen die zugeführten Verpackungen automatisch durch einen Heizkanal und anschließend durch zwei rotierende Siegelwalzen.

Fehler! Es ist nicht möglich, durch die

erstellen.

Die fortlaufend punktuelle Siegelung durch die Siegelwalzen ist unempfindlicher gegenüber leichten Beschädigungen bzw. Abnutzung der Siegelwalzen.
Ein integriertes Druckwerk zur Beschriftung der Sterilisierverpackung erleichtert die Dokumentation und bietet die Möglichkeit
während des Siegelvorganges eine Beschriftung auf der Siegelnah aufzubringen.

8 Validierung

Es existiert eine internationale Norm für die Validierung von Verpackungsprozessen:

Die Validierung: besteht aus
1) Abnahmebeurteilung
2) Funktionsbeurteilung
3) Leistungsbeurteilung.

8.1 Abnahmebeurteilung

Nachweis, dass die Ausrüstung ihrer Spezifikation entsprechend bereitgestellt und in Betrieb genommen wurde. Identifikation der kritischen Parameter
Beispiel – Siegelgerät: Einwandfreier Zustand, für Siegelung geeignet, geeigneter Aufstellungsort (Umgebungsbedingungen beachten!), Gerät ist adäquat angeschlossen; geeignete Arbeitsanweisung und ausgebildetes Personal steht zur Verfügung
Alarmsysteme bei Überschreitung der kritischen Parameter
Kalibrierungs-, Wartungs- und Reinigungsplan erforderlich

8.2 Funktionsbeurteilung

Die Funktionsbeurteilung ist der Nachweis der Funktionserfüllung innerhalb vorgegebener Grenzwerte
Kritische Prozessparameter:
 - Siegeltemperatur,
 - Druck und Zeit
Es ist ein Muster von oberen und unteren Grenzwerten anzufertigen.

8.3 Leistungsbeurteilung

Das Medizinprodukt entspricht unter den festgelegten Betriebsbedingungen ständig den vorgegebenen Spezifikationen.
Prüfung der Muster = Leistungsbeurteilung:
 - Schweissnahtgröße,
 - Festigkeit,
 - Peelbarkeit

Die Qualitätssicherung erfolgt durch regelmäßige laufende nachweisliche Kontrollen im Routinebetrieb!
Eine Revalidierung ist notwendig bei:
Veränderungen am Gerät, an Verpackungsmaterialien,… die die Sterilität, Sicherheit
oder Wirksamkeit der sterilen Medizinprodukte beeinträchtigen.

9 Praktische Übungen

Im Praxisteil soll das theoretische Wissen durch praktische Übungen ergänzt, und die
Anwendung der VP-Technik soll praktisch erlernt bzw. vertieft werden. Auf Fragen der
Lehrgangsteilnehmer soll ausführlich eingegangen werden.

Die Praxisanleitung sollte von Personen geleitet werden, die die hierfür erforderliche
fachliche Eignung besitzen.

Beispiele:
- Faltttechniken
- Versiegelung
- Verpackungsarten
- Siegelnahkontrollen (Sichtprüfung, Tinte, Kohle, Siegelnahftestigkeit,...)