

A STUDY OF ESTABLISHMENT AND EVALUATION OF A RISK PREDICTION MODEL FOR STEAM STERILIZATION

Name: Xin Zhao

Affiliation: Xuanwu Hospital Of Capital Medical University - Beijing. China

- > Establised in 1958
- National Center forNeurological Disorders
- National Clinical ResearchCenter for Geriatric Diseases
- > Amount of Beds: 1643
- > Amount of ORs: 39

backgroud

- > Steam sterilization is still the most preferred method in hospital
- > Quality control of sterilization process:
 - Professional competence of staff
 - Performance of sterilizer

A High level sterility assurance shall be achieved by effective combination of human and equipement!

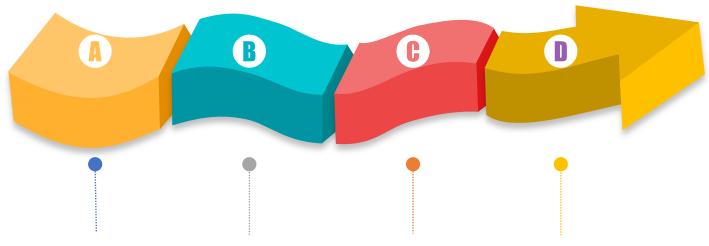
backgroud

Sterilizer Unexpected Alarm

backgroud

- > 24 alarms of sterilizers in total were triggered in 2021.
- > 320 packs had to be re-packed and re-sterilizerd due to those alarms.

Alarm	Number of Alarm (% of Total)	Resolution
Alarm during <u>Pre-Vac</u> phase	4 (16%)	 Pressure sensor calibration Tighten pipings
Alarm during <u>Sterilization</u> phase	10 (42%)	Temperature sensor calibration
Alarm during other phases	10 (42%)	Replace PLC battery


Objective

- This experiment is an attempt to establish a sterilization risk prediction model, by applying criteria stricter than the control system of sterilizer, to proactively intervene in the sterilization process at an early stage thus provide "Early warning" of the sterilization quality.
- > It eliminates the risk of failure much earlier and allows CSSD to manage the sterilizer in a proactive and predictable manner.

Materrials and Methods - Experiment Group

Batch Report Based

 Define stricter sterilization criteria than machine logic

Batch Documentation System Based

 Take additional 2 Theoritical Temp.into account.

Safety Margin Concept Based

 Inplement Safety Margin concepts for assessment

Finetune Thresholds

 Optimize our criteria by reviewing the statistics

Materrials and Methods - A

> Object of evaluation

Selected Sterilization Program	Moment of evaluation	Parameter to be evaluated
P1 (134°C, 5min)	At completion of every batch	T1: Control temperature T2: Record temperature P1: Control pressure P2: Record pressure

Materrials and Methods - A

Step 1: Read batch report carefully

| Cycle approved: Y/N Date:
|

Step 2: Understand alarm criteria

Phase	Machine Alarm Criteria
Pre-Vac	Vac Time > 15 min
Steriliza tion	1 Control Temp T1<134°C 2 Deviation between T1&T2 >1°C 3 Deviation between P1&P2>100mbar
Other	PLC battery running ≤ 24 months

Step 3: Determine preventive intervention criteria

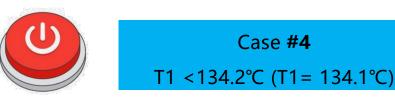
Phase	Preventive Intervention Criteria
Pre-Vac	Vac Time ≥ 8 min
	1 T1 or T2 < 134.2 °C
	2 Deviation between
Sterilization	T1&T2> 0.6 °C
	3 Deviation between
	P1&P2> 60 mbar
Other	PLC battery running ≤ 12 months

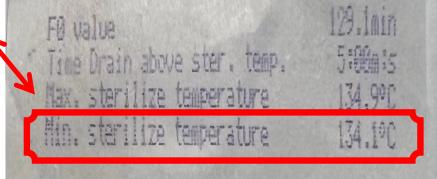
Materrials and Methods - A

	Control Group	Experiment Group
Period	2021.82022.4 (9 Months)	2022.52023.1 (9 Months)
Batches	4115	4142
	Evaluate batch report against EN285	 Evaluate batch report against EN285 Implement the new preventive intervention criteria
Evaluation and Actions	Only contact service whenever an unexpected alarm is triggered	 Contact service whenever one of the preventive intervention criteria was reached Sterilizer still runs normally while waiting for preventive service action to be taken

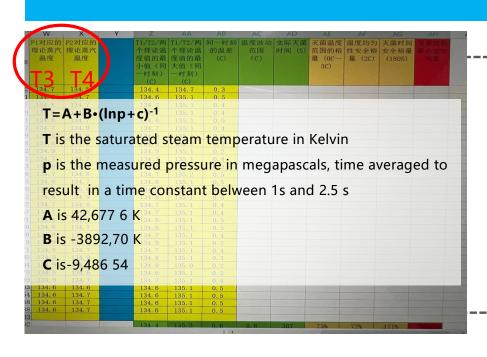
Intermediate Results of Study

#	Pre-Vac Phase	Sterilization Phase	Batch No. (Sterilizer No.)	Criteria triggered Preventive Intervention	Preventive Service Action	Time for Preventive Service
1	√		752359 (#2)	1st Vac Pulse >8min	Replace hose connection	15min
2	√		3011626 (#4)	1st Vac Pulse >8min	Calibrate P sensor	35min
3	√		3011626 (#4)	1st Vac Pulse >8min	Tighten hose connection	5min
4		√	751357 (#3)	T1 <134.2°C (T1= 134.1°C)	Calibrate T sensor	40min
5		√	751357 (#3)	Deviation T1&T2 >0.6℃	Calibrate T sensor	45min
6		√	752329 (#1)	Deviation T1&T2 >0.6℃	Calibrate T sensor	40min
7		√	752329 (#1)	T2 <134.2°C (T2= 134.1°C)	Calibrate T sensor	45min


Totally 3h25min



Intermediate Results of Study - A



Methods Optimization 1 - B

Introduce 2 more parameters of sterilization phase into the preventive intervention criteria

- Introduce T3 and T4
- Evaluate T3,T4 and T1,T2 all together agaisnt EN285
- Define the moment when sterilization phase
 starts: T1,T2,T3,T4 all ≥ 134°C
- Define the moment when sterilization phase

ends: Any of T1,T2,T3,T4 < 134

Methods Optimization 2 - C

- SVSM%=ABS (Target Value –Measured value) / Target value
- ① Sterilization Temperature Band SVSM% = $(3^{\circ}\text{C} \text{Measured Sterilization Temperature Band}) / 3^{\circ}\text{C} \times 100\%$
- ② Holding Time SVSM% = (Measured Holding Time 180s)/180s×100%
- ③ Sterilization Temperature Deviation SVSM % = (2°C- Sterilization Temperature Deviation) / 2°C×100%
- SPSM%= Min (all above 3 SVSM%)

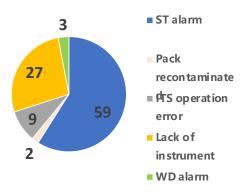
> In total 8257 batches have been evaluated

Basic Fact of Study	Control Group	Experiment Group
Number of batches (134°C,5min)	4115	4142
Number of preventive interventions under Risk Prediction Model	N/A	7

> Qualification of Sterilization Pack

Indicator of Result	Control Group	Experiment Group	Improvement
Number of sterilizaton packs processed	155664	146183	
Number of unqualified sterilization packs	315	0	
Qualifaction rate of sterilization packs	99.78%	100%	0.22%

> Sterilizer Operation Efficiency


Indicator of Result	Control Group	Experiment Group	Improvement
Operation Time (h) (A)	3925.82	3489.70	
Proactive shutdown due to preventive intervention service(h) (B)	0	3.41	
Passive shutdown due to unexpected alarm and service(h) (C)	339.93	0	
Rate of sterilizer proper operation%* (D)	91.34%	99.90%	8.56%

 $D = (A-B-C) / A \times 100\%$

> CSSD Work Efficiency

Indicator of Result	Control Group	Experiment Group	Improvement
Percentage of delivery delay due to sterilizer unexpected alarm*	59%	0	59%
OT due to sterilizer unexpected alarm (h)	279.50	0	
Percentage of OT due to sterilizer unexpected alarm %	37%	0	37%

Breakdown of CSSD delivery delay (Control Group)

*Percentage of delivery delay due to sterilizer alarm% =

Delivery delay cases due to sterilizer alarm

Total delivery delay cases

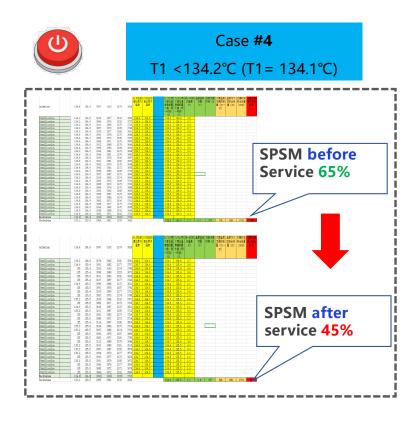
×100%

We invited Dr. Zhang Jinxin and his team from Sun Yat-sen University to analyse two groups' data generated by 4 sterilizers by statistical method

Possible Explanation

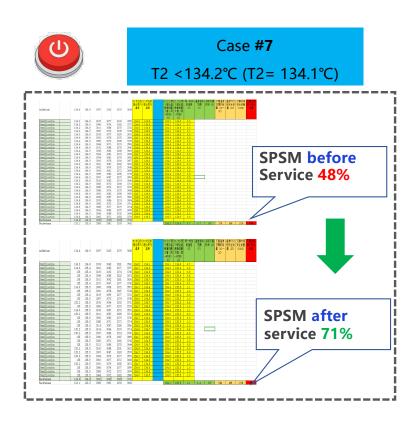
- Tolerance of parameter already rather small
- Machine performance quite stable

Indicators Analysed	EN285	P Value
Temperature deviation during sterilization phase (T1,T2,T3,T4)	< 2°C	> 0.05
Temperature fluctuation during sterilization phase	< 3℃	> 0.05
Holding time	> 180s	> 0.05



> Improvement of sterilization performance of one sterilizer is observed

#1 Sterilizer	min T1/T2/T3/T4 °C	max T1/T2/T3/T4 °C	T Deviation °C	Rate of T Deviation (Deviation/2°C)	T Fluctuation °C	Rate of T Fluctuation (Fluctuation/3°C)
	Temperatur	e Precision	Tempera	ture Distribution	Tempe	rature Stability
Without new model (740 batches in total)	134.2	135.2	0.6	29%	1.0	33%
Under new model (685 batches in total)	134.4	135.0	0.5	26%	0.6	21%
Improvement	0.2℃ 👚	0.2℃	0.1℃	3%	0.4℃	12%



Was the root course correctly identified and removed by this service intervention?

Introducing more process parameters from the batch documentation system could give more precision to the Risk Preventive Model, and at the same time help to create a new quantitative tool for assessing the effect of every service intervention

Conclusion

1 New Management Approach

2 Operate more independently

3 Feasibility and Promotion

4 Optimize Continuously - D

Acknowledgement

- Ms Liu Ting, Head nurse of OR and CSSD.
 (Xuanwu Hospital Of Capital Medical University)
- Dr. Zhang Jinxin and his team (Sun Yat-Sen University)
- CSSD branch of ChineseNursing Association

Thanks for your attention!