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Surgical instruments are constantly
exposed to corrosive conditions. 

Costs

 time for visual inspection
(is it blood or corrosion?) 

 repairs

 replacement items
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Corrosion of surgical instruments – a persistant problem



Chemical passivation methods
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Pitting corrosion Friction corrosion

Crevice corrosion

Stress corrosion

Galvanic corrosion

Laser marking

 Mechanical stress 

 Thermal stress (e.g. laser marking)

 Chemical stress: 
 Blood, skin disinfectant

Recommendation: «Red Brochure, 11th edition, AKI» https://www.a-k-i.org
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Corrosion damage – what is the root cause?

Corrosion of surgical instruments is
associated with damage to the
protective oxide layer („passive layer“)



2 Fe

2 Fe2+ (+ 4e-)

Fe2O3 + 2 H2O

O2 +2 H2O (+ 4e-)

anode

(-)

cathode

(+)

4 OH-

iron

(electrolyte)

2 Fe(OH)2 + ½ O2

4e-

oxidation of iron

rust

reduction of oxygen

flow of electric
current

(electrons e-)
+

-
e-

battery

5

Iron oxidises in an electrochemical redox-reaction to
iron oxide („rust“)
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of specific elements
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A chromium content of
at least 12% allows for
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A superficial oxide layer (passive layer) protects metal
from corrosion

Self-
passivating



steel
alloy

passivation
chromium oxide
(passive) layer

• Removal of free iron by phosphoric acid or citric acid
• Support of chromium oxidation by oxidizing chemistry, e.g. nitric acid
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Better passivation through chemistry… 

nitric acid
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• Removal of chromium by chlorid ions (blood …), de-ionized water
(sterilisation) 

• Breach of the passive layer by mechanical damage

Cr CrCr
Cr

FeFe

FeFe

8

Daily use degrades the passive layer: de-passiation
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Nach EN ISO 7153-1

Alloy no.
EN 10088-1

Chrom-
ium
content

Short name
EN 10088-1

Hardness
In Rockwell
ISO 6508-1

usage
ISO 7153-1

Corrosion resistance

1.4021 12-13 % X20Cr13 44 - 48 Diverse (Foreceps,
tongs… no scissors)

Minimum of chromium
for forming a passive 
layer

1.4112 17-18 % X90CrMoV18 52 - 60 Chisel, etc. Good, relatively high 
chromium content
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Intended purpose and manufacturability influence the choice of alloy
and corrosion resistance



1. Passivation properties
Accelerated corrosions

tests
Electro-chemical tests

2. Chemical properties
XPS, HAXPES

3. Surface properties
Water contact angle
Protein adhesion

alkaline
wash

a) no passivation
b) phosphoric-/nitric acid

(2 % deconex® 34 GR)
c) citric acid (0.5 %)
(equal amounts of acid)

70 °C, 10 min
1 % detergent

85 °C, 30 min

passivation

steel coupons
14 x 8 mm

polished surfaces (1 µm)

1.4021 
(12 % Cr) 

1.4112 
(17 % Cr) 

analyses
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Design of the study



Salt spray test

(ISO 9227:2017) 1.4021 (12 % Cr) 1.4112   (17 % Cr)

Awaiting report
(ca. 1000 h)

Not passivated test bodies corroded 
already after 1 h in physiological saline 
solution (0.9 % NaCl)

Not 
passivated

Passivated
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Accelerated corrosion tests
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Measuring the dissolution of the iron metal via measuring the flow of
electrical current «potential measurements»
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Assessment of corrosion resistance by 
electrochemical measurements



Not passivated
12 % Cr
17 % Cr

 Not passivated test bodies (both
alloys, 12 % Cr, 17m % Cr) showed
no corrosion protection

17 % Cr
passivated
phosph. nitric
citric acid

 Alloy 1.4112 (17 % chromium): 
both treatments achieved similar, 
good results
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Measurement of passivity by potential
measurements



• Alloy 1.4021 (12 % chromium):   
significantly better passivation with
phosphoric acid/ nitric acid

not
passivated

p
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nitric acid
treatment

citric acid
treatment

passive
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Measurement of passivity by potential measurements



sketch: Empa

XPS: 
Al-Kα x-ray source: Analysis of
the upper 4 nm

HAXPES:
Cr-Kα (high energy) x-ray
source: Analysis of the upper
20 nm
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Probe
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X-ray Photoelectron Spectroscopy (XPS) and 
Hard X-ray Photoelectron Spectroscopy (HAXPES) 
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Assessment of passive layer architecture via HAXPES
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Assessment of passive layer architecture via HAXPES
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Phosphoric/nitric acid of 1.4021 steel yielded a 5 × thicker passive 
layer than citric acid
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Passivation alters steel surface properties: 
Water contact angle measurements

deviation ≤ ± 0.4°; n = 3

Frisch
Nach 
14d

 (°)  (°)
12% Cr keine 57.5 69.1

34 GR 37.4 49.7
Zitr. 34.5 55.2
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sample Passi-
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FreshFresh
After         
14d  

none

Ph/Nitr

citric

Freshly passivated samples

 Better drying performance in 
the washer disinfector?



n = 3 technical replicates

200 µg/mL
BSA

2X

wash
(water)

1 % SDS
extraction

Protein adhesion assay

Micro BCA protein
assay
A562nm, (working range
0.5 – 20 µg/mL)

1.4021
12 % Cr
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Assessment of adhesion of blood protein
(BSA, bovine serum albumin)
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• Passivation increases corrosion resistance

• Passivation renders stainless steel surfaces hydrophilic, 
which may have an influence of adhesion of soil and the
drying process

• Passivation with phosphoric acid/ nitric acid
• was significantly more effective on 1.4021 stainless steel

(12 % chromium) than citric acid passivation
• yielded on 1.4021 steel a 5-fold thicker and differently

composed (chromium oxide/ chromium phosphate-
containing) passive layer, when compared with citric acid
passivation
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Conclusions
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