

New insights into chemical passivation of stainless surgical steel: Corrosion prevention and beyond

Matthias Buhmann¹, Olga Guseva², Patrik Schmutz², Qun Ren² ¹Borer Chemie AG ²Empa, Swiss Federal Institute for Material Science and Technology

Corrosion of surgical instruments – a persistant problem

Surgical instruments are constantly exposed to corrosive conditions.

Costs

(is it blood or corrosion?)

→ repairs

replacement items

Chemical passivation methods

VORLD

STERILIZATION C O N G R E S S

Corrosion damage – what is the root cause?

Corrosion of surgical instruments is associated with damage to the protective oxide layer (*"passive layer"*)

- Mechanical stress
- Thermal stress (e.g. laser marking)
- Chemical stress:
 - Blood, skin disinfectant

Recommendation: «Red Brochure, 11th edition, AKI» <u>https://www.a-k-i.org</u>

2 STERILIZATION Iron oxidises in an electrochemical redox-reaction to iron oxide ("rust")

battery

A superficial oxide layer (passive layer) protects metal FRILIZATION N G R E S S From corrosion

A chromium content of at least 12% allows for the formation of a protective oxide layer

Better passivation through chemistry...

RI D

NGRESS

- Removal of free iron by phosphoric acid or citric acid
- Support of chromium oxidation by oxidizing chemistry, e.g. nitric acid

- Removal of chromium by chlorid ions (blood ...), de-ionized water (sterilisation)
- Breach of the passive layer by mechanical damage

Intended purpose and manufacturability influence the choice of alloy and corrosion resistance

Alloy no. EN 10088-1	Chrom- ium content	Short name EN 10088-1	Hardness In Rockwell ISO 6508-1	usage ISO 7153-1	Corrosion resistance
1.4021	12-13 %	X20Cr13	44 - 48	Diverse (Foreceps, tongs no scissors)	Minimum of chromium for forming a passive layer
1.4112	17-18 %	X90CrMoV18	52 - 60	Chisel, etc.	Good, relatively high chromium content

Design of the study

steel coupons 14 x 8 mm polished surfaces $(1 \mu m)$

70 °C, 10 min 1% detergent passivation

analyses

- 85 °C, 30 min
- a) no passivation
- b) phosphoric-/nitric acid (2 % deconex[®] 34 GR)
- **c) citric acid** (0.5 %)
- (equal amounts of acid)

1. Passivation properties Accelerated corrosions tests

Electro-chemical tests

- **2.** Chemical properties XPS, HAXPES
- **3.** Surface properties Water contact angle Protein adhesion

Accelerated corrosion tests

Salt spray test

(ISO 9227:2017)

1.4021 (12 % Cr)

1.4112 (17 % Cr)

Passivated

Not passivated

Awaiting report (ca. 1000 h) Not passivated test bodies corroded already after 1 h in physiological saline solution (0.9 % NaCl)

Assessment of corrosion resistance by electrochemical measurements

Measuring the dissolution of the iron metal via measuring the flow of electrical current *«potential* measurements»

23 STERILIZATION Measurement of passivity by potential measurements

- Not passivated test bodies (both alloys, 12 % Cr, 17m % Cr) showed no corrosion protection
- Alloy 1.4112 (17 % chromium): both treatments achieved similar, good results

Measurement of passivity by potential measurements

• Alloy 1.4021 (12 % chromium): significantly better passivation with phosphoric acid/ nitric acid

X-ray Photoelectron Spectroscopy (XPS) and Hard X-ray Photoelectron Spectroscopy (HAXPES)

alloy 1.4021

Assessment of passive layer architecture via HAXPES

Assessment of passive layer architecture via HAXPES

Phosphoric/nitric acid of 1.4021 steel yielded a 5 × thicker passive layer than citric acid

ORLD

LIZATION

CONGRESS

Passivation alters steel surface properties: Water contact angle measurements

sample	Passi- vation	Fresh (°)	After 14d (°)
12% Cr	none	57.5	69.1
	Ph/Nitr	37.4	49.7
	citric	34.5	55.2

deviation $\leq \pm 0.4^\circ$; n = 3

Freshly passivated samples

→ Better drying performance in the washer disinfector?

Assessment of adhesion of blood protein

(BSA, bovine serum albumin)

Protein adhesion assay

- Passivation increases corrosion resistance
- Passivation renders stainless steel surfaces hydrophilic, which may have an influence of adhesion of soil and the drying process
- Passivation with phosphoric acid/ nitric acid
 - was significantly more effective on 1.4021 stainless steel (12 % chromium) than citric acid passivation
 - yielded on 1.4021 steel a 5-fold thicker and differently composed (chromium oxide/ chromium phosphatecontaining) passive layer, when compared with citric acid passivation

Acknowledgements

Stefanie Altenried (Empa) Roland Hauert (Empa) Stefan Mauerhofer (Borer) Patrick Zurschmiede (Borer)

Dr. rer. nat. Matthias T. Buhmann Borer Chemie AG Matthias.Buhmann@borer.ch