

Alpha-Synuclein Seeds of Parkinson's Disease: Transmissible Biological Agents with Prion-Exceeding Resistance to Steam Sterilization

Michael Beekes

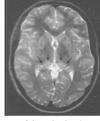
Robert Koch Institute (Berlin, Germany)

An Unconventional Biological Principle of Infection

Prions - Proteinaceous infectious particles

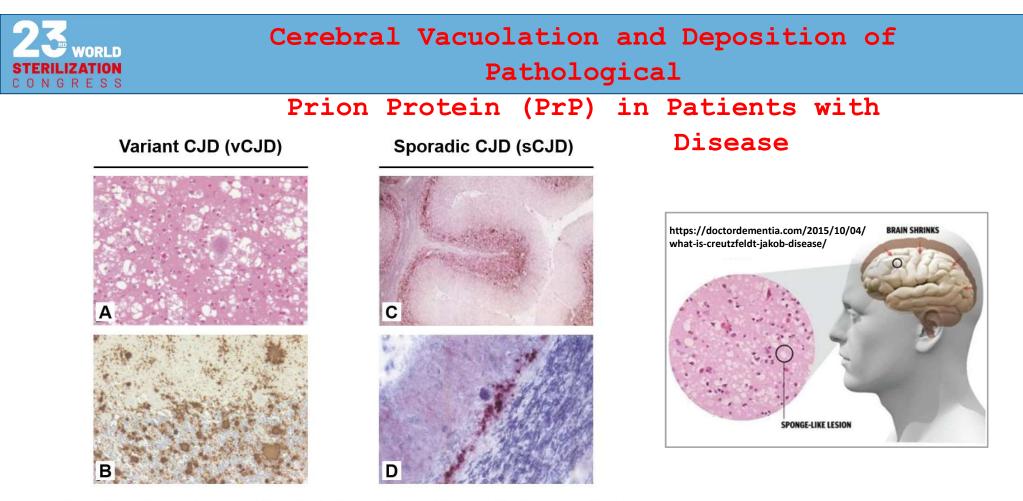
- Unconventional pathogens that fundamentally differ from bacteria, viruses, fungi, parasites or viroids.
- Devoid of nucleic acid genome.
- Cause and transmit fatal neurodegenerative brain diseases: Transmissible spongiform encephalopathies (TSEs), or prion diseases.

Prion rods

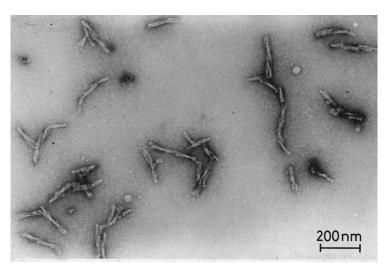


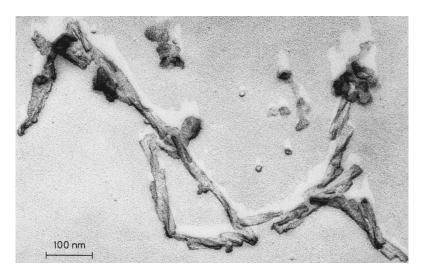
Prion Diseases of Animals and Humans

- Scrapie
 Sheep and goat
- Bovine Spongiform Encephalopathy (BSE) Cattle
- Chronic Wasting Disease (CWD)
 Deer and elk
- Creutzfeldt-Jakob Disease (CJD) Human
- Variant Creutzfeldt-Jakob Disease (vCJD) Human



Pulvinar sign in vCJD (MRI)

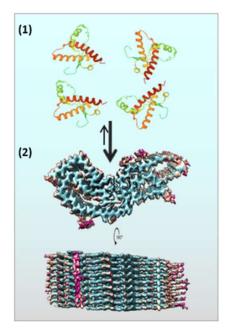

Pathological prion protein deposits in the brain of patients with vCJD (A, B) or sporadic CJD of type MM1 (C) or VV2 (D). A: haematoxylin-eosin staining; B-D: anti-PrP immunostaining. A, B: Ironside et al., 2002, APMIS, 110: 79-87; C, D: Kretzschmar & Parchi, 2006. In: Prions in Animals and Humans: 287-314



Fibrillar Ultrastructure of TSE-Associated PrP Deposits

Scrapie-associated fibrils / Prion rods

Electron micrographs: M. Özel & H. Diringer, RKI



The Prion Concept of TSEs

- TSE-associated pathological prion protein species (PrP^{TSE}) are formed by misfolding and aggregation of hostencoded, cellular prion protein (PrP^C).
- The abnormal three-dimensional structure of PrP^{TSE} confers infectious properties, thereby creating selfpropagating proteinaceous infectious particles, or prions.

Baral et al. 2015, J Struct Biol 192:37-47;
 Kraus et al. 2021, bioRxiv,https://doi.org/ 10.1101/2021.02.14.431014

TSEs and Parkinson's Disease (PD): Cerebral Proteopathies with Fundamental

Communalities

Disease

Cerebral Proteopathies	Alzheimer's Disease
	Cerebral Aß Angiopathy
	Multiple System Tauopathy (familial)
Neurodegenerative diseases	Progressive Supranuclear Palsy
	Corticobasal Degeneration
characterized by disturbances	Pick's Disease
	Diffuse Lewy Body Disease
of mystain mysessating and	Parkinson's Disease
of protein processing and	Multiple System Atrophy
	Amyotrophic Lateral Sclerosis
degradation, and aggregation	(ALS)
0 / 00 0	Familial ALS
of misfolded protein particles in	Triplet Repeat Disorders
or misiolaed protein particles m	(HD, etc.)
warmen and a large	Prion diseases (CJD, etc.)
nerve cells and glia.	Familial British Dementia
	Familial Danish Dementia
	Familial Encephalopathy w/
	NI-

Jellinger, 2005, J Neurol Neurochir Psychiatr, 6: 9-18

rders polyglutamine inserts), etc.) prion protein mentia ABri ementia ADan pathy w/ neuroserpin Neuroserpin Inclusion Bodies (FENIB) Familial Cerebral Hemorrhage cystatin C w/ Amyloidosis (Icelandic) Familial Amyloidotic Neuropathy transthyretin

Major Protein

 β -peptide (A β)

 β -peptide (A β) 4 R tau

4R, 3R tau

4 R tau 4 R tau

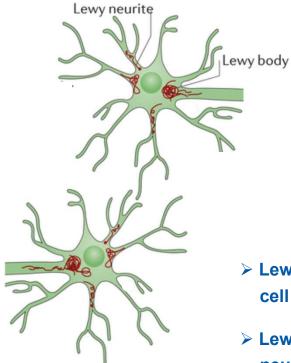
3 R tau α-synuclein

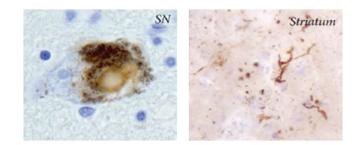
α-synuclein

α-synuclein

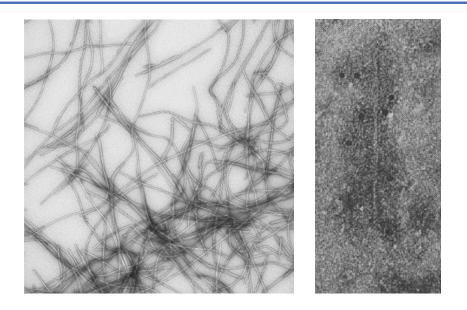
α-synuclein

SOD1 mutants

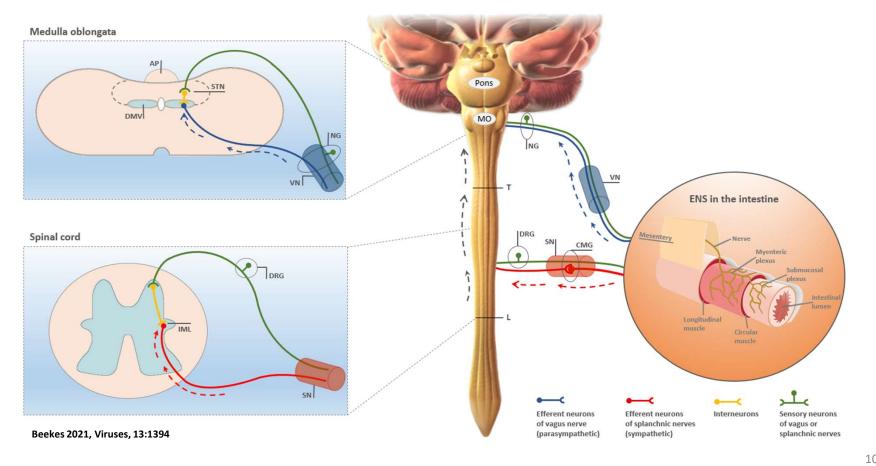

Walker & Levine, 2000, Mol Neurobiol, 21: 83-95

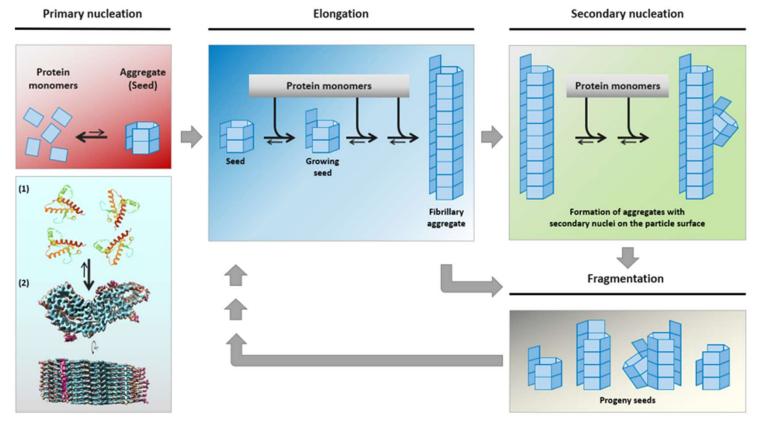


Lewy Neurites


- Lewy bodies: Spherical inclusions in the cell body of neurons (e. g. in the SN)
- Lewy neurites: Abnormal neurites in diseased neurons, containing granular material

Fiber-like morphology of pathological protein deposits in PD formed by misfolding and aggregation of host-encoded α Syn




Similar Proposed Pathways of Proteopathic Spread

from the GI-Tract to the CNS in PD and

Similar Mechanism of Nucleation-Dependent Protein Aggregation in Prion Diseases and

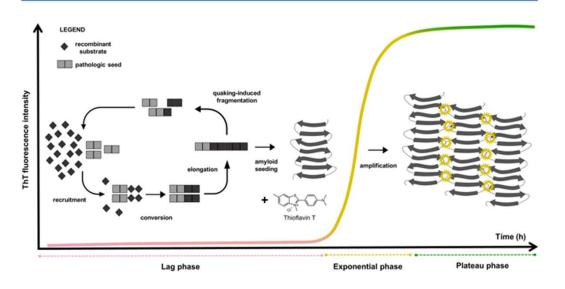
PD

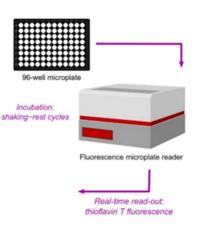
Beekes 2021, Viruses, 13:1394 (1) Baral et al. 2015, J Struct Biol 192:37-47; (2) Kraus et al. 2021, bioRxiv,https://doi.org/10.1101/2021.02.14.431014

ORLD

LIZATION

CONGRESS



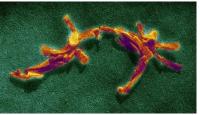

In vitro Detection and Quantification of PrPor αSyn-Seeding Activity by Real-Time Quaking-Induced

Conversion (RT-QuIC)

Concept of RT-QuIC

Technical Implementation

Reproduced with modifications from: Candelise et al., 2020, Acta Neuropathol Commun, 8: 117 Ascari et al., 2020, Front Bioeng Biotechnol, 8: 585896



"Prion-like" Phenomena in Parkinson's Disease

- PD and (peroral) TSEs show striking similarities with regard to the
 - formation
 - replication
 - and neuroanatomical spread

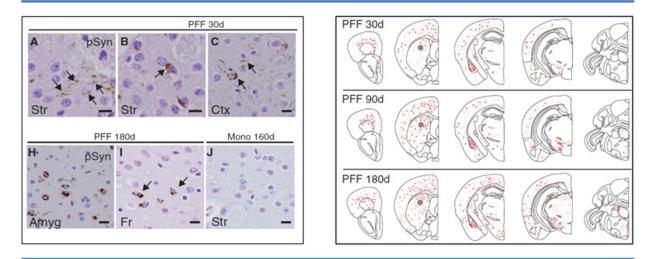
of their disease-associated αSyn or PrP seeds, respectively.

- The PrP seeds (prions) of TSEs are infectious and able to transmit disease.
- To what extent are transmissible prion diseases exemplary for PD?

Prion rods

Epidemiological Data on the Transmissibility of PD

- To date, there is no epidemiological evidence that PD is a transmissible disease entity.
- The interpretation of epidemiologic study results, however, on highly prevalent multifactorial diseases with decades of preclinical development is complex.
- If subgroups of PD cases have an infectious cause, this may be difficult to detect epidemiologically.

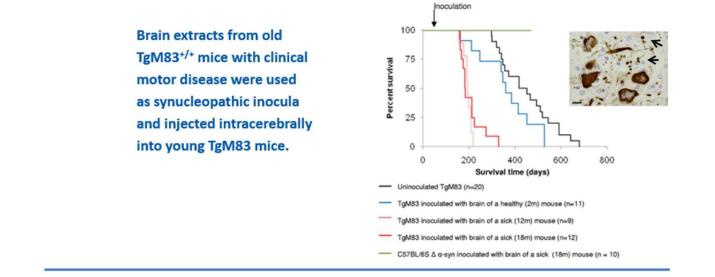


Transmission Studies with non-PD αSyn Seeds in Mice (I)

 Synucleopathic Seeding in the Brain of wild-type Mice after Intracerebral Injection of Pre-Formed non-PD αSyn Fibrils

Cerebral Deposition of pathologically aggregated α Syn in recipient mice

Luk et al., 2012, Science, 338: 949-953.



Transmission Studies with non-PD αSyn Seeds in Mice (II)

Acceleration of Disease Development by Synucleopathic Inocula in a Transgenic Mouse Model for Familial PD

Survival times of transgenic TgM83^{+/+} mice expressing human αSyn with the A53T mutation of familial PD after exposure to synucleopathic inocula

Mougenot et al., 2012, Neurobiol Aging, 33, 2225-2228

Initial Transmission Studies with α Syn Seeds from PD Patients in Mice

Study Parameter	Recasens et al., 2014	Prusiner et al., 2015
Animal model	Wt C57BL/6	TgM83 ^{+/-}
Inoculum	Lewy body extracts	Brain tissue homogenates
Mode of inoculation	Injection into substantia nigra or striatum	Injection into right parietal lobe
Incubation time after injection	4 months - 17 months	> 360 days
Cerebral αSyn pathology	Diffuse αSyn accumulations in neuronal cytoplasm, partly phosphorylated at Ser 129 and resistant to Proteinase K	Not detected
Neuronal damage	Progessive nigrostriatal neurodegeneration	Not reported
Motor or other impairments	Impaired motor coordination in pole test	Not detected
	Ann Neurol, 75: 351-362	PNAS, 112: E5308-5317

RKI-Transmission Study with αSyn Seeds from PD Patients in Mice

Acta Neuropathologica https://doi.org/10.1007/s00401-021-02312-4

Received: 16 November 2020 / Revised: 13 March 2021 / Accepted: 14 April 2021

ORIGINAL PAPER

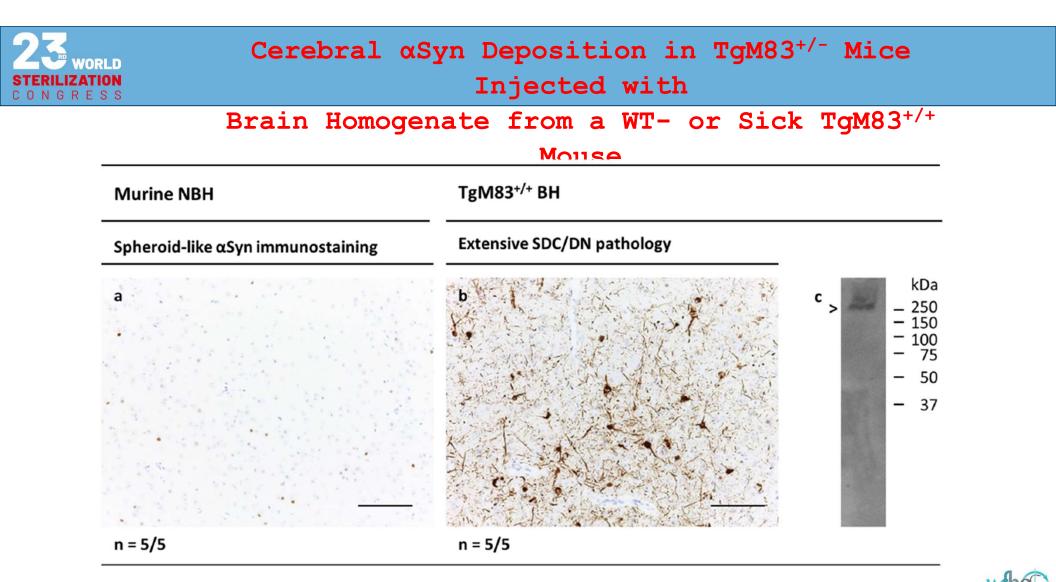
Transmissible α -synuclein seeding activity in brain and stomach of patients with Parkinson's disease

Achim Thomzig¹ · Katja Wagenführ^{1,2} · Phillip Pinder¹ · Marion Joncic¹ · Walter J. Schulz-Schaeffer³ · Michael Beekes¹

Western blot detection of pathological αSyn aggregates in PD brain homogenates

а	1	2	3	4 5
	NBH	РВН А	РВН В	PStH PMuH
kDa 250 —		>	>	
250 <u>-</u> 150 <u>-</u> 100 <u>-</u> 75 <u>-</u>				
50 -				
37 -				
	-	-	-	-

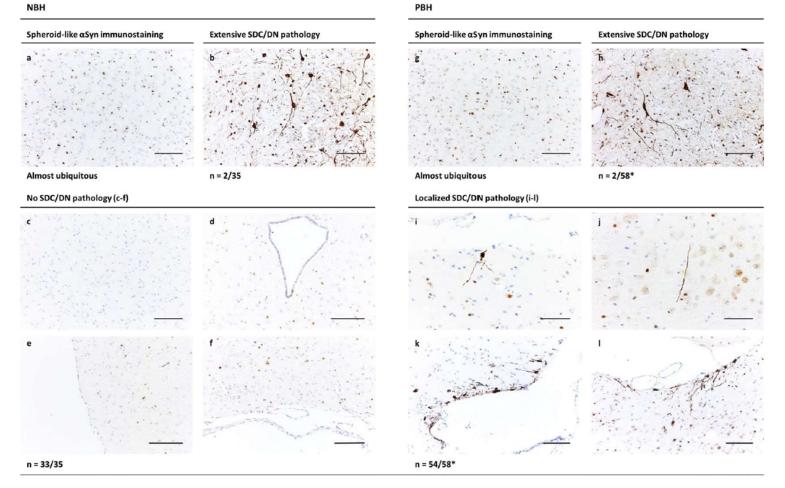
Titration of αSyn seeding activity in PD brain homogenates by RT-QuIC*


Log ₁₀	-						
dilution	None						
	NBH ₀ Donor 1	NBH ₀ Donor 2	PBH ₀ Patient A	PBH ₀ Patient B			
-1	13/129ª	6/52	10/10	10/10			
-2		-					
-3	-		10/10	10/10			
-4			9/10	10/10			
-5			10/10	10/10			
-6		-	5/10	8/10			
-7			5/10	2 ^b /10			
-8			3 ^b /10	1 ^b /10			
-9			0/10	0/10			

*Pinder et al., 2021, J Hosp Inf, 108: 25-32

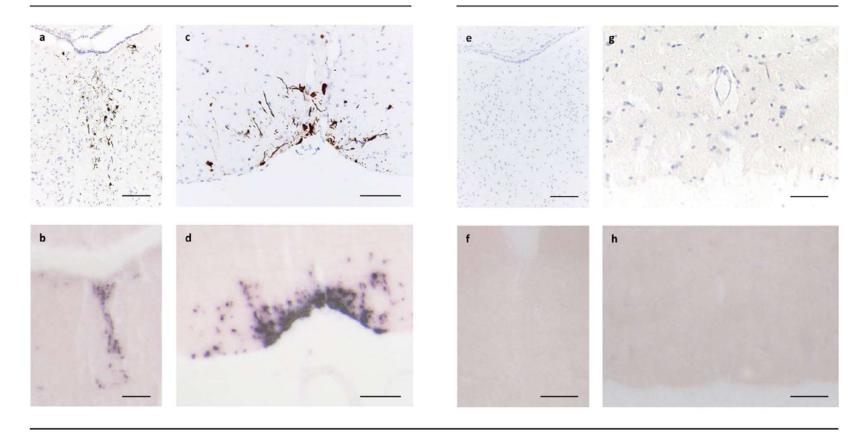
Animal model: TgM83^{+/-} mice

Inoculum:	Brain tissue
	(caudate nucleus)
	homogenate from
	PD patients A & B
Titre:	10 ¹⁰ SD ₅₀ /g for both
	PD patients
Mode of	
inoculation:	Intracerebral injection
	into right hemisphere
Incubation	
time:	Up to 612 dpi



Cerebral aSyn Deposition in TgM83^{+/-} Mice Injected with

Brain Homogenate from a non-DD Donor or PD

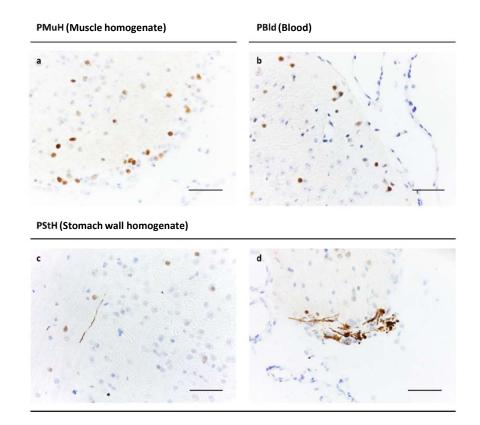


Consistent IHC and PET Blot Detection of Cerebral

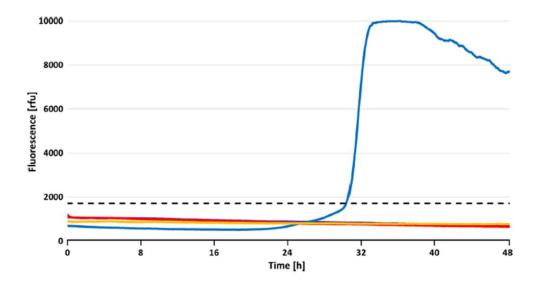
α Syn Deposits in PD-Challenged TgM83^{+/-} Mice

PBH

NBH



Analysis of Cerebral α Syn Pathology in TgM83^{+/-} Mice Injected with Peripheral Tissue


or Blood of a PD Patient

Detection of aSyn Seeding Activity in Stomach

Wall Tissue from a PD Patient by RT-QuIC

CONGRESS

Conc. [%]	PStH		PStH (65 °C)	NStH (65 °C)		
+ NBH		+PBH	+NBH	+NBH		
10	0/10	0/10	0/10	0/5		
1	10/10	10/10	10/10	0/10		

Colour code of samples: Violet, 10% (w/v) PStH + 10% (w/v) NBH; red, 10% (w/v) NStH + 10% (w/v) NBH; blue, 1% (w/v) PStH + 10% (w/v) NBH; yellow, 1% (w/v) NStH + 10% (w/v) NBH.

23 world sterilization c o n g r e s s

Statistical Analysis of Localized SDC/DN Pathology Detection in the Brain of TgM83^{+/-}

Test Mice								
Sex of mice	Inoculum	N	Incubation period Age					Р
			Median	Mean	Median Mean		DN pathology ^a	
Male	NBH	13	572	552	621	601	0/13	n. a
	PBH A	15	580	582	627	630	15/15	< 0.00001*
	PBH B	11	571	546	623	598	10/11	< 0.00001*
	PStH A	7	546	542	599	595	3/7	0.0307*
Female	NBH	20	570	563	621	614	0/20	n. a
	PBH A	15	572	545	620	592	15/15	< 0.00001*
	PBH B	15	570	560	620	612	14/15	< 0.00001*
	PStH A	7	546	541	599	595	4/7	0.002*
Male and female	NBH	33	570	559	621	608	0/33	n. a
	PBH A	30	572	563	622	611	30/30	< 0.00001*
	PBH B	26	570	554	620	606	24/26	< 0.00001*
	PStH A	14	546	542	599	595	7/14	0.0001*

Test Mice

Clinical Examination and Readout of TgM83^{+/-} Test Mice

- Daily health assessment based on a clinical score sheet.
- Up to 612 dpi no evidence for higher incidence or faster onset of neurological or other health impairments in TgM83^{+/-} test mice than in negative control animals.

		Score					yea	r = 20	
Clinical sign	Qualifier			-	_	Date			
Appearance:			-	-	-	-	-	-	
Body weight loss	Up to 10%	1							
(compared to initial	10 to 20%	2			I			I	
weight)	20 to 35%	3							
Coat condition	Slightly unkempt	1							
	Lack of grooming Marked/prolonged piloerection	23							
Body function:									
Bladder incontinence	Evidence of some loss of control (small amount								
	of urine in nest)	1							
	More pronounced "leaking" of urine	2							
	Incontinence	3							
Bladder retention	Palpated but will empty on handling	1							
	More effort required to empty bladder	2		1	I				
	Unable to urinate without assistance; signs of			1	I				
	discomfort/distress during or after manual emptying	3							
Tail tone	Diminished lifting or curling of tail	1		1	I				
Tall LORIE	Loss of tone in distal half of tail	2							
	Loss of tone in entire tail	3							
Respiration (rapid, slow	Slight alteration	1							
or deep breathing)	Moderate alteration	2							
	Marked alteration	3							
Interaction with									
environment: Nest condition	Slightly disorganised								
Nest condition	Some attempt at nest building but disorganised	1 2							
	No nest	3							
Social behaviour	Reduced interaction with other animals	2							
social benaviour	Significantly reduced interaction, passive	3							
Position and									
movement:									
Side resting position	Present	3							
Righting time	Slow to right when placed on back	1		1	I				
	Marked difficulty in righting	2							
	Inability to right within 5 seconds	3							
Paresis	Slow forelimb abduction when placed on back	1							
	Reduced forelimb abduction	2							
	No forelimb abduction	3							
Gait	Clumsy	1							
	Dragging one hind limb	2							
	Dragging two hind limbs	3							
Paralysis	Present	3							
Other									
observations:				1	I				
(scores to be				1	I				
established)		-	-	-	-	-	-	-	
Total daily score:									
Actions taken:	Who was consulted,								
	what has been done								

Fentener van Vlissingen et al., 2015, Lab Animals 49: 267-283 Exemplary score sheet template

Conclusions from TgM83^{+/-} Transmission Study at RKI

- Our study in TgM83^{+/-} mice substantiated that experimentally transmitted αSyn seeds of PD, including those from the stomach wall, are able to propagate in new mammalian hosts.
- The detected stimulation of αSyn pathology was not accompanied by apparent neurological symptoms or other overt health impairments.
- The consequences of the observed αSyn seed propagation and potential safeguards need to be further investigated.

Conceivable risk scenario

Transfer of seeding-active αSyn particles of PD could accelerate genetically predisposed forms of synucleopathies or confer health impairments below the threshold of overtly visible symtoms.

23 world STERILIZATION C O N G R E S S	Reduction of PD-Associated αSyn Seeding Activity										
	by				on at RT-Ou	134°C a IC	as				
	Parameter [Units]Steam sterilization at 134°C										
		None		5 min		90 min					
		PBH₀ 'A'	PBH₀ 'B'	PBH₅ 'A'	PBH₅ 'B'	PBH ₉₀ 'A'	PBH ₉₀ 'B'				
	Titre of seeding activity [SD ₅₀ /g]	10 ^{10.1}	10 ^{10.0}	10 ^{7.7}	10 ^{7.9}	10 ^{7.8}	10 ^{7.8}				
	Reduction factor of seeding activity [logs10]	-	-	2.4	2.1	2.3	2.2				

Pinder et al., 2021, J Hosp Inf, 108: 25-32

Prion-Exceeding Resistance of PD-Associated α Syn Seeds to Steam Sterilization at 134°C

 Decontamination studies testing several disinfectants or physical processes on 263K scrapie and vCJD brain- or BSE spinal cord homogenates revealed a strong correlation between seeding activity (PMCA) and animal bioassay results.

[Pritzkow et al., 2011, PLoS One, 6:e20384; Yoshioka et al., 2013, Vet Res, 9:134; Belondrade et al., 2016, PLoS One, 11:e0146833; Belondrade et al., 2020, mSpehre, 5:e00649-19]

European and French Medicine agencies encourage or request the use of both human prions and highly sensitive cell-free prion amplification assays to quantify prion inactivation efficacy.

[ANSM, 2018; EMA, 2018; Moudjou et al., 2020, Front Bioeng Biotechnol, 8:591024]

Type of seeds	Sample material	Duration of steam sterilization at 134°C [min]	Reduction factors of seeding activity [logs ₁₀]		
PD-associated αSyn particles	Brain Homogenates (BH)	5, 90	2.1 - 2.4		
vCJD prions	вн	5, 18	7.5*, 8.2*		
	Dried BH on steel wires	20	> 7.0ª		
CJD prions (MM2)	вн	5, 18	8.9*, 9.0*		
263K scrapie	вн	5, 18	9.5*, 9.7*		
prions	Dried BH on steel wires	5	≈ 5.0		
127S scrapie prions	Dried BH on steel wires	20	> 6.0ª		

^a Detection limit of the assay

* Schwenke et al., 2022, J Hosp Inf (in press; DOI: <u>https://doi.org/10.1016/j.jhin.2022.08.014</u>) References for other indicated reduction factors provided in: Pinder et al., 2021, J Hosp Inf, 108: 25-32

Overall Conclusion

- PD-associated αSyn seeds show properties of transmissible replicative agents and prion-exceeding resistance to steam sterilization.
- Health risks possibly emanating from iatrogenic transfers of PD-associated αSyn seeds, as well as the similarities and differences between such seeds and prions need to be further investigated.
- For the time being possible contaminations of seeding-active αSyn aggregates should ideally be thoroughly removed or inactivated when reprocessing medical devices.

Acknowledgements

ROBERT KOCH INSTITUT

Universitätsklinikum des Saarlandes und Medizinische Fakultät der Universität des Saarlandes

Prof. Dr. Walter Schulz-Schaeffer

Dr. Achim Thomzig Dr. Katja Wagenführ Ms. Marion Joncic Mr. Phillip Pinder Ms. Patrizia Reckwald Ms. Safak Bayram Ms. Annette Dietrich Ms. Stefanie Redlich

An additional "R" to the 3Rs

Remembering the animals Iliff (2002). ILAR Journal 43: 38-47.

Bundesministerium für Gesundheit Project

IIA5-2512NIK004//321-4471-02

